1) Find a vector \vec{M} whose magnitude is 9 and whose direction is perpendicular to both vectors \vec{E} and \vec{F} , where $\vec{E} = \hat{a}_x + 2\hat{a}_y - 2\hat{a}_z$ and $\vec{F} = 3\hat{a}_y - 6\hat{a}_z$

2) Determine if each of the following vector fields is solenoidal, conservative, or both:

 $(a) \vec{A} = x^2 \hat{a}_x - 2xy \hat{a}_y$ **(b)** $\vec{B} = x^2 \hat{a}_x - y^2 \hat{a}_y + 2\hat{a}_z$ **(c)** $\vec{C} = \frac{\sin(\varphi)}{2}$ $\frac{n(\varphi)}{\rho^2} \hat{a}_{\rho} + \frac{\cos(\varphi)}{\rho^2}$ $\frac{\partial^2(\varphi)}{\partial^2} \hat{a}_{\varphi}$

(d)
$$
\vec{D} = \text{re}^{-r} \hat{a}_r
$$

3) Test the divergence theorem for the vector: $\vec{A} = r\cos(\theta)\hat{a}_r + r\sin(\theta)\hat{a}_\theta + r\sin(\theta)\cos(\phi)\hat{a}_\phi$ over the volume of hemisphere of radius R.

4) Test the divergence theorem for the displacement vector \vec{r} over the volume of a cylinder of radius *R* and height *H.* The bottom base of the cylinder lies on the *x*-*y* plane.

5) Test the divergence theorem for the vector field $\vec{A} = xy\hat{a}_x + 2yz\hat{a}_y + 3xz\hat{a}_z$. Take the cube as your volume shown in Figure, with sides of length 2.

 \overline{z} $\overline{2}$

6) Test Stokes' theorem for the function $\vec{A} = xy\hat{a}_x + 2yz\hat{a}_y + 3xz\hat{a}_z$, using the triangular shaded area of Figure.

 $\vec{F} = r^2 \cos(\theta) \hat{a}_r + r^2 \cos(\phi) \hat{a}_{\theta} - r^2 \cos(\theta) \sin(\phi) \hat{a}_{\phi}$ using the volume one octant of the sphere of radius *R* (Shown in figure).

8) Compute the line integral of $\vec{A} = 6\hat{a}_x + yz^2\hat{a}_y + (3y + z)\hat{a}_z$. along the triangular path shown in Figure. Check your answer using Stokes' theorem.

9) Check the. divergence theorem for the vector field

 $\vec{F} = r^2 sin(\theta) \hat{a}_r + 4r^2 cos(\theta) \hat{a}_\theta - r^2 tan(\theta) \hat{a}_\varphi$ using the volume of the. " ice-cream cone" shown in Figure (the top surface is spherical, with radius R and centered at the origin).

10) A vector field is given by $\vec{G} = 15 \hat{a}_r$. Verify Stoke's theorem for a segment of a spherical surface defined by :

$$
r = 5m, 0 \le \theta \le 25^{\circ}, 0 \le \varphi \le 2\pi
$$

11) If $\vec{D} = 2r \hat{a}_r C/m^2$, find the total electric flux leaving the surface of cube $0 \le x, y, z \le 0.4$ **12**) Verify Stoke's theorem for a vector field $\vec{G} = \frac{\cos{(\varphi)}}{2}$ $\frac{\partial(\varphi)}{\partial \varphi}$ \hat{a}_z in the segment of cylindrical surface defined by

$$
\rho = 2, \frac{\pi}{3} \le \varphi \le \frac{\pi}{2}, 0 \le z \le 2
$$

13) Find the Cartesian components of the electric field due to finite line charge $\rho_l = 15 \mu C/m$ along the x axis from x 2 to 4 m at point $(0,3,0)$ m.

14) Determine \vec{E} at (x,-1,0)m due to a uniform sheet charge with $\rho_s = \frac{1}{3}$ $\frac{1}{3\pi}$ nC/m² is located at z= 5m and a uniform line charge with $\rho_l = \frac{-25}{9}$ $\frac{25}{9}$ nC/m, at z=-3,y=3m.

15) The following charge distributions are present in free space:

ν

A 12nC point charge at P(2,0,6), a uniform line charge density 3nC/m at x=-2,y=3 and an infinite uniform surface charge density 0.2 nC/ m^2 at x=2.

- [1] Find \vec{E} at the origin.
- **[2]** Determine the force acting on a point charge 10 μC placed at the origin.
- **[3]** Calculate the total electric flux leaving the surface of a sphere of 2 m radius centred at (2,0,6). **16**) If $V = \frac{\sin(\theta)}{n^2}$ $\frac{n(\theta)}{r^2}$ V, Find \vec{E} and ρ_v .

17) If $\vec{D} = \frac{5}{\sqrt{2}}$ $\frac{5}{r^2}$ $\hat{a}_r - r^2 \varphi \sin(\theta) \hat{a}_\varphi$ C/m² for a sphere or radius a . What is ρ_v in the sphere?

18) The Line $x=3$, $z=-1$ carries charge 20 nC/m while plane $x=-2$ carries charge ρ_0 nC/m². If the force acts on a point charge -5 mC located at the origin is: $\vec{F} = -0.6\hat{a}_x - 0.18\hat{a}_z$ N. Find the value of the surface charge density ρ_0 .